Skip to main content
开放网络的先行者与推动者—星融元
加入我们技术支持(Support)  TEL:(+86)4000989811

标签: 科普-数据中心

真机测评:全开放架构400G交换机,超低时延以太网性价比之选!

近期文章


云计算、人工智能和 5G 的大规模增长促使对能够支持新型 400G 技术和架构的高带宽、可扩展解决方案的需求激增。

400G 的解决方案非常适合应对流量持续增长的大容量电信提供商、大型数据中心以及企业。与常规的100G解决方案相比,400G 光收发器模块的每个 RU 可提供 4 倍的高带宽——通过在更少的物理空间中提供相同的带宽,降低每比特成本。另一方面,在现网中引入400G交换机后总端口将会更少,管理起来也更容易。

星融元400G以太网交换机(CX-N系列)

CX732Q-N是星融元推出的一款400G以太网交换机产品,转发时延低至~400ns。

  • 32x400G QSFP-DD 端口,兼容40G/100G/200G,可实现平滑的升级过渡
  • 支持带内网络遥测:2x10G SFP+ 的INT端口为后端提供实时精准的遥测数据;基于可编程交换芯片实现,不占用CPU性能
  • 128G M.2 SSD
  • 5+1热插拔风扇,1+1电源

400G实拍照片

CX-N系列低时延云交换机型号一览

型号业务接口 交换容量包转发率
CX864E-N64 x 800GE OSFP,2 x 10GE SFP+102.4Tbps28700Mpps
CX732Q-N32 x 400GE QSFP-DD/QSFP56/QSFP28/QSFP+, 2 x 10GE SFP+25.6Tbps7600Mpps
CX664D-N64 x 200GE QSFP56/QSFP28/QSFP+, 2 x 10GE SFP+25.6Tbps7600Mpps
CX564P-N64 x 100GE QSFP28/QSFP+, 2 x 10GE SFP+12.8Tbps7600Mpps
CX532P-N32 x 100GE QSFP28/QSFP+, 2 x 10GE SFP+6.4Tbps6300Mpps
CX308P-48Y-N48 x 25GE SFP28/SFP+, 8 x 100GE QSFP28/QSFP+4.0Tbps2600Mpps

相关阅读:私有云网络的进化之路:与开放网络技术的完美融合

开放的软件架构——AsterNOS

包含CX732Q-N交换机在内的CX-N全系交换机都搭载了AsterNOS网络操作系统,它具备高度的功能定制和可扩展性,帮助实现网络运维自动化,可为云数据中心多业务融合、AIGC网络、高性能计算(HPC)、大数据分析等多种业务场景提供卓越的网络服务。

对比社区版SONiC,AsterNOS在以下方面做了大量功能补充和增强:

对比社区版SONiC,AsterNOS功能补充和增强

支持EVPN多归属

与MC-LAG 解决方案相比,EVPN Multi-homing不仅能更好地解决可扩展性和流量负载平衡方面的限制,还能提高 VXLAN 接入端的可靠性。

参阅:MC-LAG还是Multi-Homing?探讨网络通信高可用性的新选择

思科风格命令行

此外,AsterNOS 完全支持 Cisco风格的命令行模式,大大降低了运维端的学习成本。下面是我们在使用 AserNOS 的交换机上演示以不同的命令行模式(Cisco-like Klish/Linux Bash)配置 VLAN
AsterNOS配置界面

返回资源中心

最新动态

交换机堆叠:提升网络性能与可扩展性的关键技术

更多相关内容


用于科普文章的图片交换机堆叠是一种网络技术,通过将多台交换机物理连接并逻辑上组成一个单一的高性能交换系统,以提供更高的网络性能、可靠性和可扩展性。本文将介绍交换机堆叠的概念、工作原理以及在企业网络中的应用。

随着企业网络规模和带宽需求的不断增长,构建高性能、可靠的网络基础设施变得至关重要。在这样的背景下,交换机堆叠技术应运而生。交换机堆叠是一种网络技术,通过将多台交换机物理连接并逻辑上组成一个单一的高性能交换系统,以提供更高的网络性能、可靠性和可扩展性。

交换机堆叠的核心思想是将多台交换机视为一个逻辑单元,形成一个共享的交换平面。这样做的好处是:

  1. 提升网络性能:交换机堆叠可以提供更高的网络性能。通过将多台交换机物理连接在一起,数据可以在这些交换机之间以高带宽的方式传输,从而降低数据传输延迟并提高网络响应速度。此外,堆叠技术还可以实现交换机之间的负载均衡,确保网络流量得到有效的分配。
  2. 增强网络可靠性:交换机堆叠可以增强网络的可靠性。当其中一台交换机出现故障时,堆叠系统可以自动检测到并将故障交换机排除在堆叠集群之外,而不会对整个网络造成中断。这种冗余设计提高了网络的容错性和可靠性。
  3. 实现网络可扩展性:交换机堆叠可以实现网络的可扩展性。通过将多台交换机组成一个逻辑单元,可以轻松地扩展网络规模。当需要增加更多的交换机时,只需简单地将新的交换机添加到堆叠中,而无需对整个网络进行复杂的重配置或重新布线。

交换机堆叠的工作原理是通过特定的物理连接和协议来实现的。在堆叠集群中,一台交换机被指定为主交换机(Master Switch),其他交换机则作为成员交换机(Member Switch)连接到主交换机上。主交换机负责管理整个堆叠集群,包括配置和控制交换机的功能。成员交换机则通过特定的堆叠协议与主交换机进行通信,共享交换机的配置和状态信息。

交换机堆叠技术在企业网络中有广泛的应用。它可以用于构建高密度数据中心网络、提供高可靠性的核心交换网络以及构建大规模企业校园网等。通过堆叠技术,企业可以简化网络管理和维护,减少物理设备数量和复杂性,提高网络的灵活性和可管理性。

总结:交换机堆叠是一种关键的网络技术,通过将多台交换机物理连接并逻辑上组成一个单一的高性能交换系统,提供了更高的网络性能、可靠性和可扩展性。通过堆叠技术,企业可以构建高性能的网络基础设施,实现快速的数据传输和高可靠性的网络连接。交换机堆叠技术在企业网络中具有广泛的应用前景,为企业提供了灵活、可管理和可扩展的网络解决方案。

返回资源中心

什么是 BGP EVPN 多归属(Multi-Homing)

更多相关内容


BGP EVPN(Border Gateway Protocol Ethernet Virtual Private Network)是一种用于构建数据中心互联的技术。它提供了一个灵活、可扩展的解决方案,可以在多个数据中心之间建立高效的互联。

Multi Homing 是 BGP EVPN 技术中的一个重要概念,它允许数据中心网络中的设备同时连接到多个交换机,从而提高网络的可靠性和可用性。当一个交换机或链路出现故障时,设备可以快速切换到备用路径,从而保证业务的连续性。

BGP EVPN Multi Homing 主要包括以下几个方面:

Active-Active 和 Active-Standby

在 BGP EVPN Multi Homing 中,设备可以同时连接到多个交换机,这些连接可以是 Active-Active 或 Active-Standby。Active-Active 意味着所有连接都处于活动状态,数据可以通过任何连接发送和接收。Active-Standby 意味着只有一个连接处于活动状态,其他连接处于备用状态,只有在活动连接出现故障时才会被激活。

Symmetric 和 Asymmetric

BGP EVPN Multi Homing 还可以分为 Symmetric 和 Asymmetric 两种模式。Symmetric 模式是指所有连接都有相同的带宽和优先级,可以同时使用;而 Asymmetric 模式则是指连接之间存在带宽和优先级的差异,需要进行流量调度和负载均衡。

Single-Active 和 Multiple-Active

BGP EVPN Multi Homing 还可以分为 Single-Active 和 Multiple-Active 两种模式。Single-Active 模式是指只有一个连接处于活动状态,其他连接处于备用状态;而 Multiple-Active 模式则是指多个连接都处于活动状态,并且可以同时使用。

前缀同步和 MAC 地址同步

当设备同时连接到多个交换机时,BGP EVPN Multi Homing 还需要进行前缀同步和 MAC 地址同步。前缀同步是指在多个交换机之间同步设备的 IP 地址和路由信息,以确保数据可以正确到达目的地。MAC 地址同步是指在多个交换机之间同步设备的 MAC 地址信息,以确保数据可以正确转发。

LACP 和 VRRP

为了提高网络的可靠性和可用性,BGP EVPN Multi Homing 还可以使用 LACP(Link Aggregation Control Protocol)和 VRRP(Virtual Router Redundancy Protocol)等协议。LACP 可以将多个物理连接绑定成一个逻辑连接,提高带宽和可靠性;VRRP 可以将多个路由器虚拟成一个虚拟路由器,提供冗余和负载均衡功能。
总之,BGP EVPN Multi Homing 是一种非常重要的技术,它可以提高数据中心网络的可靠性和可用性,确保业务的连续性。通过了解其原理和实现方式,可以更好地应用和管理 BGP EVPN 技术,为企业的业务发展提供更好的支持。

Build a high-performance, flexible, and scalable cloud data center network.

了解相关内容》〉》〉》〉》〉

返回资源中心

什么是虚拟扩展本地局域网协议VXLAN


关注星融元


VXLAN全称Virtual eXtensible Local Area Network即虚拟扩展局域网,是由IETF定义的NVO3(Network Virtualization over Layer 3)标准技术之一,是对传统VLAN协议的一种扩展。VXLAN的特点是将L2的以太帧封装到UDP报文(即L2 over L4)中,并在L3网络中传输。

VXLAN的产生背景

数据中心规模的壮大,虚拟机数量的快速增长与虚拟机迁移业务的日趋频繁,给传统的“二层+三层”数据中心网络带来了新的挑战:

 虚拟机规模受网络设备表项规格的限制

对于同网段主机的通信而言,报文通过查询MAC表进行二层转发。服务器虚拟化后,数据中心中VM的数量比原有的物理机发生了数量级的增长,伴随而来的便是虚拟机网卡MAC地址数量的空前增加。一般而言,接入侧二层设备的规格较小,MAC地址表项规模已经无法满足快速增长的VM数量。

传统网络的隔离能力有限

VLAN作为当前主流的网络隔离技术,在标准定义中只有12比特,也就是说可用的VLAN数量只有4096。对于公有云或其它大型虚拟化云计算服务这种动辄上万甚至更多租户的场景而言,VLAN的隔离能力显然已经力不从心。

虚拟机迁移范围受限

虚拟机迁移,顾名思义,就是将虚拟机从一个物理机迁移到另一个物理机,但是要求在迁移过程中业务不能中断。要做到这一点,需要保证虚拟机迁移前后,其IP地址、MAC地址等参数维持不变。这就决定了,虚拟机迁移必须发生在一个二层域中。而传统数据中心网络的二层域,将虚拟机迁移限制在了一个较小的局部范围内。值得一提的是,通过堆叠、SVF、TRILL等技术构建物理上的大二层网络,可以将虚拟机迁移的范围扩大。但是,构建物理上的大二层,难免需要对原来的网络做大的改动,并且物理大二层网络的范围依然会受到种种条件的限制。

VXLAN采用L2 over L4(MAC-in-UDP)的报文封装模式,将二层报文用三层协议进行封装,可实现二层网络在三层范围内进行扩展,同时满足数据中心大二层虚拟迁移和多租户的需求。

VXLAN的发展历程

协议最早由VMware、Arisa网络、Cisco提出,后期加入华为、博科、Red Hat、Intel等公司支持,IETF于2012年8月发布第一个RFC Internet Draft版本,最新的标准是2014年8月RFC 7348。

VXLAN的相关概念

  • NVO3(Network Virtualization Over Layer3 3层之上的网络虚拟化)

基于IP Overlay的虚拟局域网络技术统称为NVO3。

  • NVE(Network Virtrualization Edge网络虚拟边缘节点)

是实现网络虚拟化的功能实体,VM里的报文经过NVE封装后,NVE之间就可以在基于L3的网络基础上建立起L2虚拟网络。网络设备实体以及服务器实体上的VSwitch都可以作为NVE。

  • VTEP(VXLAN Tunnel Endpoints,VXLAN隧道端点)

VXLAN网络的边缘设备,是VXLAN隧道的起点和终点,VXLAN报文的相关处理均在这上面进行。VTEP既可以是一个独立的网络设备,也可以是虚拟机所在的服务器。

  • VNI(VXLAN Network Identifier,VXLAN 网络标识符)

VNI类似VLAN ID,用于区分VXLAN段,不同VXLAN段的虚拟机不能直接二层相互通信。一个VNI表示一个租户,即使多个终端用户属于同一个VNI,也表示一个租户。VNI由24比特组成,支持多达16M((2^24-1)/1024^2)的租户。

  • VXLAN隧道

“隧道”是一个逻辑上的概念,它并不新鲜,比如大家熟悉的GRE。说白了就是将原始报文“变身”下,加以“包装”,好让它可以在承载网络(比如IP网络)上传输。从主机的角度看,就好像原始报文的起点和终点之间,有一条直通的链路一样。而这个看起来直通的链路,就是“隧道”。顾名思义,“VXLAN隧道”便是用来传输经过VXLAN封装的报文的,它是建立在两个VTEP之间的一条虚拟通道。

  • BD(bridge domain),vxlan转发二层数据报文的广播域,是承载vxlan数据报文的实体。类似于传统网络中VLAN的概念,只不过在VXLAN网络中,它有另外一个名字BD。不同的VLAN是通过VLAN ID来进行区分的,那不同的BD是通过VNI来区分的。
  • VXLAN报文格式

VXLAN报文格式

图1: VXLAN报文格式

VXLAN标准报文格式

图2:VXLAN标准报文格式

VXLAN的工作原理

VXLAN网络中的通信过程

结合如下示例简要说明VXLAN网络中的通信过程:

VXLAN通信过程

图3:VXLAN通信过程

图3中 Host-A 和 Host-B 位于 VNI 10 的 VXLAN,通过 VTEP-1 和 VTEP-2 之间建立的 VXLAN 隧道通信。

数据传输过程如下:

  • Host-A 向 Host-B 发送数据时,Host-B 的 MAC 和 IP 作为数据包的目标 MAC 和 IP,Host-A 的 MAC 作为数据包的源 MAC 和 IP,然后通过 VTEP-1 将数据发送出去。
  • VTEP-1 从自己维护的映射表中找到 MAC-B 对应的 VTEP-2,然后执行 VXLAN 封装,加上 VXLAN 头,UDP 头,以及外层 IP 和 MAC 头。此时的外层 IP 头,目标地址为 VTEP-2 的 IP,源地址为 VTEP-1 的 IP。同时由于下一跳是 Router-1,所以外层 MAC 头中目标地址为 Router-1 的 MAC。
  • 数据包从 VTEP-1 发送出去后,外部网络的路由器会依据外层 IP 头进行包路由,最后到达与 VTEP-2 连接的路由器 Router-2。
  • Router-2 将数据包发送给 VTEP-2。VTEP-2 负责解封数据包,依次去掉外层 MAC 头,外层 IP 头,UDP 头 和 VXLAN 头。
  • VTEP-2 依据目标 MAC 地址将数据包发送给 Host-B。

上面的流程我们看到 VTEP 是 VXLAN 的最核心组件,负责数据的封装和解封。

隧道也是建立在 VTEP 之间的,VTEP 负责数据的传送。

VTEP节点工作机制

通过以上通信步骤的描述可以看到,VTEP节点在VXLAN网络通信中起到了至关重要的作用。在VXLAN网络通信中,VTEP节的职责主要有3项:

  • 将虚拟网络通信的数据帧添加VXLAN头部和外部UDP和IP首部。
  • 将封装好的数据包转发给正确的VTEP节点。
  • 收到其他VTEP发来的VXLAN报文时,拆除外部IP、UDP以及VXLAN首部,然后将内部数据包交付给正确的终端。

对于功能2)的实现,即VXLAN数据包的转发过程。当VTEP节点收到一个VXLAN数据包时,需要根据内部以太网帧的目的MAC地址找到与拥有该目的地址的终端直接相连的VTEP地址,因此,这里需要一个目的MAC地址和VTEP节点IP地址的映射关系,VTEP节点利用一个转发表来存储此映射关系。转发表的格式为:<VNI, Inner Dst MAC,VTEP IP>,即给定VNI和目的MAC地址后映射到一个VTEP IP地址。

需要说明的是,映射VTEP节点IP地址时,之所以需要VNI的信息,是因为当存在多租户的情况下,各个租户将会独立组网,此时,多个租户设定的MAC地址有一定的概率会出现重叠,此时我们必须保证每个租户的网络都能独立地正常通信,因此,在为每个租户配置唯一的一个VNI的情况下,给定VNI和目的MAC地址,唯一确定一个VTEP地址。

下图4是一个样例,对于下图中的网络拓扑,分别给出了两个VTEP节点的转发表:

VTEP节点工作过程

图4:VTEP节点工作过程

上图中给出了6个终端,分别属于2个租户,其中,终端T1、T2和T4属于租户1,分配VNI为1,终端T3、T5和T6属于租户2,分配VNI为2,两个VTEP节点的转发表已在图中给出。

每一个VTEP节点都必须拥有完整的转发表才可以正确地进行转发的功能,转发表的学习过程可以基于这样一种简单的策略:通过ARP报文学习,当收到终端发送的数据帧时,首先根据收到数据的端口判定数据发送方的VNI值,根据VNI和数据帧中的目的MAC查找对应的VTEP节点,如果查找成功,则转发,否则,在当前VXLAN网络中广播ARP请求报文,这样,连接目的MAC终端的VTEP节点就会发送ARP回答报文,这样就学习到了新的转发表项。

需要说明的是,在多租户的环境下,基于信息安全等因素,各个租户的流量必须实现隔离,因此在发送广播ARP请求报文时,不可以直接在多租户的环境中广播,必须保证只有当前VXLAN网络的终端可以收到广播报文,因此,和物理网络中的ARP广播请求的实现有所不同,这里需要通过IP组播机制来模拟广播。

因此,VTEP节点还需要保存对应于每个租户的VNI值的组播域,即对于每一个VNI值,存储包含当前VXLAN网络中终端的所有VTEP节点的IP,用于ARP广播时的组播操作。

 VXLAN二层网关与三层网关

  • VXLAN二层网关:用于终端接入VXLAN网络,也可用于同一VXLAN网络的子网通信。
  • VXLAN三层网关:用于VXLAN网络中跨子网通信以及访问外部网络。

VXLAN集中式网关与分布式网关

根据三层网关部署方式的不同,VXLAN三层网关又可以分为集中式网关和分布式网关。

  • VXLAN集中式网关

集中式网关是指将三层网关集中部署在一台设备上,如下图所示,所有跨子网的流量都经过这个三层网关转发,实现流量的集中管理。

5VXLAN集中式网关

部署集中式网关的优点和缺点如下:

  • 优点:对跨子网流量进行集中管理,网关的部署和管理比较简单。
  • 缺点:转发路径不是最优:同一二层网关下跨子网的数据中心三层流量都需要经过集中三层网关绕行转发(如图中橙色虚线所示)。
  • ARP表项规格瓶颈:由于采用集中三层网关,通过三层网关转发的终端的ARP表项都需要在三层网关上生成,而三层网关上的ARP表项规格有限,这不利于数据中心网络的扩展。
  • VXLAN分布式网关

VXLAN分布式网关是指在典型的“Spine-Leaf”组网结构下,将Leaf节点作为VXLAN隧道端点VTEP,每个Leaf节点都可作为VXLAN三层网关(同时也是VXLAN二层网关),Spine节点不感知VXLAN隧道,只作为VXLAN报文的转发节点。如下图所示,Server1和Server2不在同一个网段,但是都连接到一个Leaf节点。Server1和Server2通信时,流量只需要在Leaf1节点进行转发,不再需要经过Spine节点。

部署分布式网关时:

  • Spine节点:关注于高速IP转发,强调的是设备的高速转发能力。
  • Leaf节点:作为VXLAN网络中的二层网关设备,与物理服务器或VM对接,用于解决终端租户接入VXLAN虚拟网络的问题。作为VXLAN网络中的三层网关设备,进行VXLAN报文封装/解封装,实现跨子网的终端租户通信,以及外部网络的访问。

VXLAN分布式网关

图6:VXLAN分布式网关

VXLAN分布式网关具有如下特点:

同一个Leaf节点既可以做VXLAN二层网关,也可以做VXLAN三层网关,部署灵活。

Leaf节点只需要学习自身连接服务器的ARP表项,而不必像集中三层网关一样,需要学习所有服务器的ARP表项,解决了集中式三层网关带来的ARP表项瓶颈问题,网络规模扩展能力强。

VXLAN在星融元交换机上的配置实例

下面实例中星融元的两台CX306交换机通过配置BGP EVPN来实现VXLAN网络的建立。

CX306交换机通过配置BGP EVPN来实现VXLAN网络的建立

全文请注册/登录后获取:https://asterfusion.com/d-20220617/

相关文章

在交换机上配置部署 RoCEv2 / EVPN-VXLAN / MC-LAG


关注星融元


本文主要描述如何在Asterfusion CX306P-48S(以下简称CX306P)搭建的模拟网络上部署如下解决方案:

  • RoCEv2:在模拟网络上承载RDMA应用,通过CX306P的PFC和ECN功能,为所承载的RDMA应用构建无损的RoCEv2环境。
  • BGP EVPN和VXLAN:在模拟网络上承载VXLAN网络,将原本在Open vSwitch上进行的封装、去封装全部从Server端卸载到CX306P内的VTEP上,并且在模拟网络上启动BGP EVPN,自动化地创建VXLAN隧道、传递虚拟网络路由。
  • MC-LAG:在模拟网络上为服务器创建一个高可靠环境,确保每台服务器都能通过标准LAG双上联到两台CX306P上,这两台CX306P通过MC-LAG被虚拟化成一台高可靠的交换节点。

如上解决方案共用一个物理拓扑,如图1所示:

CX-N的部署拓扑图

部署过程中所涉及到的设备、接口及管理网口的IP地址如下表所示:

设备名称接口IP地址
交换机A管理口192.168.4.102
交换机B管理口192.168.4.105
Server1管理口192.168.4.2
Server2管理口192.168.4.133
Server3管理口192.168.4.150

RoCEv2 / EVPN-VXLAN / MC-LAG部署的硬件与软件环境

部署环境中涉及到的硬件和软件如下表所示:

名称型号硬件指标数量备注
交换机CX306P《参见产品彩页》2
服务器1、至少8G内存
2、磁盘不少于500G
3、Server1和Server3的BIOS开启CPU嵌套虚拟化(INTEL:VT-x, AMD:AMD-V)
3Server1和Server3各需要安装一块Mellanox ConnectX-4网卡(25G)
光模块10GSFP+12
100GQSFP284
光纤多模10G/25G适用6
多模100G适用2
软件版本备注
操作系统Centos7.6安装时选择Compute Node 模式,根目录/至少500G
iperf3可以直接yum install iperf3安装,3台server均需要安装
Mellanox网卡驱动4.7-3.2.9.0具体参考《解决方案-Mellanox网卡驱动安装-e-20200211-v1.1》
tcpdump可以直接yum install tcpdump

RoCEv2的配置部署

逻辑组网与配置思路

RoCEv2的配置部署 逻辑组网与配置思路

配置思路:

  • 为交换机A和交换机B配置IP和路由
  • 分别为Server1、Server2、Server3配置IP和路由网关
  • 配置Server1的PFC功能
  • 配置交换机A的ACL打标DSCP功能
  • 使能交换机A和交换机B的QOS功能
  • 先在Server1发送IB流量,观察队列流量
  • 停掉Server1上的流量发送,在Server2发送普通TCP背景流量,观察队列流量
  • 观察ACL规则匹配情况
  • 将Server1和Server2的流量都打起来,观察交换机B的出口拥塞情况
  • 配置交换机A和交换机B的PFC功能
  • 观察测试PFC功能
  • 关闭交换机A和交换机B的PFC功能,配置交换机B的ECN功能
  • 配置服务器ECN相关设置
  • 测试ECN功能

BGP EVPN和VXLAN配置部署

逻辑组网与配置思路

BGP EVPN和VXLAN配置部署逻辑组网与配置思路

配置思路:

  • 配置交换机A和交换机B的HOSTNAME
  • 配置交换机A的EVPN
  • 配置交换机B的EVPN
  • Server1上创建虚机和VLAN
  • Server3上创建虚机和VLAN
  • 测试Server1和Server3的连通性
  • 查看交换机A的路由信息
  • 查看交换机B的路由信息

MC-LAG的配置部署思路

逻辑组网与配置思路

MC-LAG的配置部署思路 逻辑组网与配置思路

配置思路:

  • 分别为Server1、Server3配置LAG
  • 交换机A创建PortChannel,并添加接口
  • 交换机A创建VLAN,并添加成员
  • 交换B创建PortChannel,并添加接口
  • 交换机B创建VLAN,并添加成员
  • 交换机A配置MC-LAG
  • 交换机B配置MC-LAG
  • 测试链路故障
  • 测试设备故障

全文请注册/登录后获取:https://asterfusion.com/d-20220617/

相关文章

什么是 BGP路由协议


关注星融元


BGP全称BorderGatewayProtocol,也叫边界网关协议,是一种路径矢量路由协议,最新版本是BGPv4。BGP是互联网上一个核心的去中心化自治路由协议。BGP是最复杂的路由协议,属于应用层协议,其传输层使用TCP,默认端口号是179。BGP是唯一使用TCP作为传输层的路由协议。

BGP的分类介绍

BGP按照运行方式分为eBGP(External/Exterior BGP)和iBGP(Internal/Interior BGP)。

  • eBGP:运行于不同AS之间的BGP称为eBGP。为了防止AS间产生环路,当BGP设备接收eBGP对等体发送的路由时,会将带有本地AS号的路由丢弃。
  • iBGP:运行于同一AS内部的BGP称为iBGP。为了防止AS内产生环路,BGP设备不将从iBGP对等体学到的路由通告给其他iBGP对等体,并与所有iBGP对等体建立全连接。为了解决iBGP对等体的连接数量太多的问题,BGP设计了路由反射器和BGP联盟。

应该注意的是,使用内部 BGP 不是使用外部 BGP 的前提条件。自治系统可以从多种内部协议中进行选择,以连接其内部网络上的路由器。

BGP的相关概念

AS(Autonomous sydstem)

自治系统,指在一个(有时是多个)组织管辖下的所有IP网络和路由器的全体,它们对互联网执行共同的路由策略。一个AS是一个独立的整体网络。每个AS有自己唯一的编号。通常一个自治系统将会分配一个全局的唯一的16位号码, ASN范围:1-65535;其中1-64511属于公有ASN,64512-65535属于私有ASN。

AS_Path

路由每通过一个AS范围都会产生一个记录。

BGP报文交互中的角色

BGP报文交互中分为Speaker和Peer两种角色。

  • Speaker:发送BGP报文的设备称为BGP发言者(Speaker),它接收或产生新的报文信息,并发布(Advertise)给其它BGP Speadker。
  • Peer:相互交换报文的Speaker之间互称对等体(Peer)。若干相关的对等体可以构成对等体组(Peer Group)。

BGP的路由器号(Router ID)

  • BGP的Router ID是一个用于标识BGP设备的32位值,通常是IPv4地址的形式,在BGP会话建立时发送的Open报文中携带。对等体之间建立BGP会话时,每个BGP设备都必须有唯一的Router ID,否则对等体之间不能建立BGP连接。
  • BGP的Router ID在BGP网络中必须是唯一的,可以采用手工配置,也可以让设备自动选取。缺省情况下,BGP选择设备上的Loopback接口的IPv4地址作为BGP的Router ID。如果设备上没有配置Loopback接口,系统会选择接口中最大的IPv4地址作为BGP的Router ID。一旦选出Router ID,除非发生接口地址删除等事件,否则即使配置了更大的地址,也保持原来的Router ID。

BGP的报文

  • BGP对等体间通过以下5种报文进行交互,其中Keepalive报文为周期性发送,其余报文为触发式发送:
  • Open报文:用于协商BGP参数,包括版本,AS号,hold time等,然后建立BGP对等体连接。
  • Update报文:用于在对等体之间交换路由信息。
  • Notification报文:用于中断BGP连接。
  • Keepalive报文:用于保持BGP连接。
  • Route-refresh报文:用于在改变路由策略后请求对等体重新发送路由信息。只有支持路由刷新(Route-refresh)能力的BGP设备会发送和响应此报文。

BGP的3张表

  • 邻居表(adjancy table):保存所有的BGP邻居信息。
  • BGP表(forwarding database):保存从每一个邻居学到的路由信息。
  • 路由表(routing table):BGP默认不做负载均衡,会从BGP表中选出一条到达各个目标网络最优的路由,放入路由表保存。路由器只需按路由表保存的路由条目转发数据即可。

全文请注册登录后获取:https://asterfusion.com/d-20230427/

资料下载

相关文章

对星融元产品感兴趣?

立即联系!

返回顶部

© 星融元数据技术(苏州)有限公司 苏ICP备17070048号-2